Energie de premier attachement électronique








télécharger 61.63 Kb.
titreEnergie de premier attachement électronique
date de publication18.10.2016
taille61.63 Kb.
typeDocumentos
c.21-bal.com > droit > Documentos

Architecture de la matière Samedi 1ier Octobre

CORRECTION DU DEVOIR DE CHIMIE N°1
Q

A

B

C


0,5








0,5








0,5







1,5


0,5
0,5

0,5


1

1



0,5

1

0,5

0,5

0,5







uestions de cours


Règle de Hund : Les électrons se disposent dans les sous-couches dans l’ordre des énergies croissantes et pour des niveaux d’énergie dégénérés, en occupent le maximum avec des électrons de spin parallèles.

Energie de premier attachement électronique : L’énergie de premier attachement électronique, notée A1, correspond à l’énergie mise en jeu lors de la capture d’un électron par un atome isolé gazeux

X (g) + e-  X- (g)

Cette énergie s’exprime en électronvolt ou en kJ.mol-1.

Acide de Lewis : Un acide de Lewis est une entité chimique dont un des atomes la constituant possède une lacune électronique, ce qui la rend susceptible d'accepter un doublet d'électrons.
Problème 1 : Autour du brome

1. Le numéro atomique d’un élément correspond au nombre de protons présents dans son noyau.

2. Un noyau de 79Br contient 35 protons et 44 neutrons. Un noyau de 81Br contient 35 protons et 46 neutrons. Ces deux atomes sont isotopes.

3. On appelle l’état fondamental d’un atome son état de plus basse énergie.

4. La configuration électronique du brome dans son état fondamental est d’après le principe de Pauli, la règle de Hund et la règle de Klechkowski

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5

En rangeant les sous-couches par ordre croissant d’énergie, on aboutit à

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
5. Les électrons de valence correspondent à ceux de la couche de n le plus grand. On leur adjoint ceux d'une sous-couche n-1 si elle n'est que partiellement remplie. Ici les électrons de valence sont ceux des sous-couches 4s (n = 4 et l = 0) et 4p (n = 4 et l = 1). Le brome a donc 7 électrons de valence.

6. Représentation de la répartition des électrons de valence dans leurs cases quantiques :



On sait que ml varie entre – l et l et qu’une sous-couche s correspond à l = 0 et une p à l = 1. Il n’y a donc qu’une OA s (correspondant à ml = 0) contre 3 OA p (correspondant à ml = -1, 0 ou 1).

Pour trouver la répartition des électrons, on se fonde aussi sur le principe d’exclusion de Pauli, qui stipule que deux électrons d’un même atome ne peuvent pas être dans le même état quantique, donc ne peuvent pas correspondre au même quadruplet (n, l, ml, ms). Ainsi, pour une OA donnée, pour laquelle n, l et ml sont fixés, il ne reste plus que deux possibilités car ms ne peut prendre que les deux valeurs +1/2 et -1/2. Dans chaque case quantique, on peut donc placer au maximum 2 électrons de spin opposés.

7

A

B

C



0,5

0,5








1






0,5








0,25




0,5

0,5

0,5
0,5


0,25
0,5


0,5

0,5

1,5



. S = 1/2 (un seul électron célibataire). Le brome est donc paramagnétique dans son état fondamental.

8. Pour trouver la ligne dans laquelle le brome se trouve, il suffit de repérer le nombre quantique principal qui correspond à la dernière couche en cours de remplissage dans la configuration électronique précédente. Il s’agit de la couche n°4, le brome se situe donc dans la 4ème ligne. En ce qui concerne la colonne, on remarque que la configuration électronique se termine en 4p5 ; le brome se situe donc dans la 5ème colonne du bloc p, soit la 17ème colonne de la classification.

9. L’énergie de première ionisation d’un élément chimique A est l’énergie nécessaire à la transformation A(g) → A+(g) + e-. A(g) et A+(g) étant des espèces gazeuses dans leur état fondamental.

10. L’espèce obtenue après première ionisation du brome est Br+(g). La répartition de ses électrons dans sa dernière sous-couche à l’état fondamental est la réponse f.

On élimine en effet les réponses b, c et h car elles ne proposent pas la bonne sous-couche (la dernière sous-couche est la 4p qui comporte 3 OA). On élimine aussi b, d, e et h car elles ne proposent pas le bon nombre d’électrons (après ionisation, la sous-couche 4p contient 4 électrons). On élimine aussi b et g car elles ne respectent pas le principe de Pauli : ce sont donc des configurations impossibles. Enfin, on élimine a qui ne respecte pas la règle de Hund et correspond donc à un état excité et non à l’état fondamental. Il n’y a que la réponse f qui respecte à la fois les trois principes de remplissage et correspond donc à l’état fondamental de Br+.

11. EIn augmente avec n. En effet, on arrache des électrons de plus en plus « profonds ». Ils sont donc en moyenne plus proches du noyau, donc plus fortement liés à lui. Il est donc plus difficile de les soustraire à son attraction.

Au niveau de EI6, on arrache le 6ème électron. On réalise donc :

Br5+(g) → Br6+(g) + e- .

Or, les configurations électroniques de ces ions dans leur état fondamental sont :

Br5+ : 1s2 2s2 2p6 3s2 3p6 3d10 4s2

Br6+ : 1s2 2s2 2p6 3s2 3p6 3d10 4s1

Cette ionisation correspond donc à l’arrachage d’un électron 4s, la sous-couche 4p ayant été totalement vidée au préalable. En changeant de sous-couche, on entame un niveau d’énergie inférieur et l’opération est plus difficile, d’où une augmentation plus nette de EI5 à EI6 par rapport aux premières valeurs (EI1 à EI5).

De la même manière, au niveau de EI8, on arrache le 8ème électron. On réalise donc : Br7+(g) → Br8+(g) + e- .

Or, les configurations électroniques de ces ions dans leur état fondamental sont :

Br7+ : 1s2 2s2 2p6 3s2 3p6 3d10

Br8+ : 1s2 2s2 2p6 3s2 3p6 3d9

Cette ionisation correspond donc à l’arrachage d’un électron 3d, les sous-couches 4p et 4s ayant été totalement vidées au préalable. On entame à nouveau un niveau d’énergie inférieur et l’opération est encore plus difficile, d’où une augmentation encore plus nette de EI7 à EI8 par rapport aux premières valeurs (EI1 à EI7).

12. L’énergie de première ionisation du brome est EI1 = 12 eV. Cette énergie peut être apportée à l’atome par un photon qui doit posséder une énergie E supérieure ou égale à EI1. On note ν la fréquence de ce photon et λ sa longueur d’onde dans le vide. L’énergie du photon est liée à la fréquence et à la longueur d’onde dans le vide par les relations : E = h.ν = h.(c/λ) .

On en déduit E ≥ EI1 d’où h.ν ≥ EI1, d’où ν ≥ EI1/h et c/λ ≥ EI1/h

O

A

B

C









0,5










1


0,5

0,5
5,5

0,5

0,5



5,25

1

0,5

1




1
7,25


0,5



n peut enfin en déduire . La longueur d’onde dans le vide maximale est donc donnée par λmax = = 103 nm.

13. Le brome appartient à la famille des halogènes (17ème colonne).

14. On retrouve les numéros atomiques de tous les autres éléments appartenant à la colonne du brome en ajoutant (ou en retranchant) le nombre d’éléments de la ligne suivante (ou précédente).

Z(Cl) = Z(Br) - nombre l’élément dans la ligne 4 = 35-18 = 17

Z(F) = Z(Cl) - nombre l’élément dans la ligne 3 = 17-8 = 9

Z(I) = Z(Br) + nombre l’élément dans la ligne 5 = 35+18 = 53

Z(At) = Z(I) + nombre l’élément dans la ligne 6 = 53+32 = 85

15. Parmi ces éléments, le fluor est le plus électronégatif, c’est-à-dire celui qui a la plus grande tendance à attirer à lui les électrons des liaisons covalentes qu’il forme avec d’autres atomes. En effet, l’électronégativité augmente lorsque n diminue, donc en remontant dans une colonne de la classification périodique. Ainsi l’halogène le plus électronégatif est celui de la ligne 2 : F (et le moins électronégatif, celui de la ligne 6 : At).

16. Le pouvoir oxydant augmente lorsque Z diminue au sein d’une même colonne. On peut mettre en évidence cette évolution du pouvoir oxydant dans la famille des halogènes en testant l’action des dihalogènes sur des solutions aqueuses d’halogénures de potassium.
Problème 2 : Réduction du monoxyde d’azote en monoxyde de diazote

1. Le principe de Pauli, la règle de Hund, la règle de Klechkowski permettent d’écrire les configurations électroniques des deux atomes dans l’état fondamental :

N : 1s2 2s2 2p3

O : 1s2 2s2 2p4

2. L’électronégativité traduit la tendance d’un atome A lié à un autre atome B à attirer vers lui les électrons du doublet liant A-B. Les deux échelles les plus utilisées sont l’échelle de Mulliken et l’échelle de Pauling.

3. Le noyau de l’atome d’oxygène comporte un proton de plus que le noyau de l’atome d’azote. Sa charge, positive, est donc plus élevée, il attire plus les électrons par interaction coulombienne, la distance électron-noyau étant similaire dans les deux cas par ailleurs.

4. D’après la configuration électronique à l’état fondamental proposée précédemment, l’atome d’azote comporte 5 électrons de valence, alors que l’atome d’oxygène en possède 6. La molécule considérée n’étant pas globalement chargée, le nombre total d’électrons de valence de la molécule est la somme des nombres d’électrons de valence de chacun des atomes constitutifs, soit 11 électrons de valence, conduisant à 5 doublets et un électron célibataire.

La structure de Lewis résultante est :



L

A

B

C



0,5







1,5


2




1,5

2



’espèce obtenue est un radical, très réactif. L’électron célibataire aura tendance à s’apparier avec l’électron célibataire d’une molécule voisine pour stabiliser l’ensemble, ce qui conduit à un dimère, comme indiqué ci-dessous :



5. Par un raisonnement analogue à celui de la question précédente, N2O possède 16 électrons de valence, soit 8 doublets. Il est possible d’écrire deux formes mésomères notablement contributives, l’une avec une charge formelle moins sur l’atome d’azote terminal, l’autre avec cette charge sur l’atome d’oxygène. Pour que les charges formelles soient en accord avec l’électronégativité, la forme retenue est la deuxième.



Page sur

similaire:

Energie de premier attachement électronique iconLa Bibliothèque électronique du Québec
La somme de trois mille fanes, attribuée au premier prix, sera dès la fin de ce mois à votre disposition

Energie de premier attachement électronique iconDevoir à la maison : Energie (1°L et 1° es)
«L’énergie ne se produit pas, elle est transformée. Cette transformation s’accompagne d’un dégagement de chaleur. Ainsi dans l’ampoule...

Energie de premier attachement électronique iconSvv-encheres est un portail de ventes aux enchères publiques par...

Energie de premier attachement électronique iconChapitre II noyaux, masse, energie I equivalence masse energie
L’allure de la courbe d’Aston permet d’envisager deux façons de faire diminuer l’énergie de masse d’un système, donc de faire apparaître...

Energie de premier attachement électronique iconRejoindre Rhodia, membre du groupe Solvay, c’est s’ouvrir aux métiers...

Energie de premier attachement électronique iconChapitre XII : formes d’energie-principe de conservation de l’energie

Energie de premier attachement électronique iconActivite (1S) : energie mecanique
«L’Energie est une grandeur caractérisant un système et exprimant sa capacité à fournir un travail» !!!

Energie de premier attachement électronique iconProspères. 13 Si on prend toute l’énergie qu’on utilise, et on fait...

Energie de premier attachement électronique iconEn physique, toute interaction implique un échange d'énergie et réciproquement....
«hamiltonien» de cet objet. On ne parle plus d'ailleurs d'objet, mais de système formé d'objets liés par un champ de force, pour...

Energie de premier attachement électronique iconEn physique, toute interaction implique un échange d'énergie et réciproquement....
«hamiltonien» de cet objet. On ne parle plus d'ailleurs d'objet, mais de système formé d'objets liés par un champ de force, pour...








Tous droits réservés. Copyright © 2016
contacts
c.21-bal.com